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SUMMARY

As a result of characterlizing Jjoint scene content in
terms of the jolnt probablility density function, a new
registration metric was defined as the threcsholded difference
(TD) method. It produced a sharper correlation peak than
other pixel-by-pixel methocds investigated. Analytical
comparisons and simulations were done to show the effects of
scene content on registrations by direct cross correlation,
mean absolute difference and thresholded difference methods.

An adaptive binary quantizer was implemented which sets
the quantization threshold as the mean or median in a 3 x 3
moving window. It showed far superior peak sharpness when
compared with a global thresholding method; however, it
showed greater sensitivity to noisy images.

Gradient pre-processing to enhance image high freguency
content produced sharper correlation peaks for all methods
except the TD method which was unaffected but still had the
sharpest correlation peak of any method.

Simulations were done for imagery representing different
spectral bands, different time of day and different scale.
For these non-compatible images, the TD method showed results

which were generally as good or better than the other methods.
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PREFACE
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Correlation Concepts for Non-Compatible Imagery" and covers
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University of Tennessee Space Institute, Tullahoma,
Tennessee 37388. It was sponsored by the U.S, Air Force
Office of Scientific Research, Bolling AFB, DC 20332. ’
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1. INTRODUCTION AND SUMMARY

A number of Air Force systems, whose operating regimes
include mid-course and terminal phases, have need for reliable,
stand-alone guidance capability. A useful technique for
accomplishing this guidance has been to correlate imagery
from an on-board sensor with reference imagery stored in a
computer.

The development of smaller, faster and less expensive
signal processing hardware makes it practical to consider in
more detail the possibility of real-time or near real-time
processing of two-dimensional data sets such as obtained from
sensors in multiple spectral bands. Further it is possible to
consider doing more of this processing on-board to reduce
dependence on data links. Applications for real-time two-
dimensional processing of imagery include image registration,
automatic target handoff, pattern recognition and feature
extraction. The major technigue for accomplishing these
applications 1s computation of the cross-correlation function
between a reference image and the incoming, unclassified
imagery.

The remainder of this section provides a summary of the
problem statement and objectives,detalls of the effort pro-
posed to accomplish those objectives, and a summary of signifi-
cant results. Further detalls of the method and results are

given in sections 2. through 6.
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1.1 Problem Statement and "hi.c.ivives. The corrcelation

technique wc:'ks well under ideal conditions, i.e., compatitble
sensors, no geometric distortion, high signal-to-nolce ratio
and relaxed time constraint for computation. In fact, a numbter
of variations on the cross-correlation function algorithm have
been shown to reduce false peaks, provide high cpatial regis-
tration accuracy or reduce required computation time. Unfor-
tunately the advantages mentioned above are usually comnetitive
and not attainable with any one given algorithm. In many

cases the two images are obtained from different sensors so

that differences in field-of-view, spectral respcnse and

geometric distortion add to the processing complexity and
introduce additional error sources in the cross-ccrrelaticn
technique.

Variations on the classical cross-correlation function
definition have been examined which seek to improve rescluticn,
reduce false peaks and increase processing speed. A techniguc

known as the sequential similarity detection algorithm [ﬂ

increases processing speed by computing a function based c¢n
the difference of data point amplitudes instead of their
product. Since subtraction is a faster process than multirli-
cation, a time savings is realized. A phase correlation
technigue which improves resolution and false peak rojecticn
is described by Kuglin and Hines [2]. Unfortunately this
improved performance is achieved at the cost of increased

processing complexity.

[Ny
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Algorithms whicn sacrifice gray-scale for increased
processing speed are reported by various companles engaged
in two-dimensional correlation research. These algorithms
offer the best promise for real-time correlation of two
images. In fact if an extreme coarse guantization (2
level cr 1 bit) 1s used then multiplication and addition
are reduced to simple logic functions. The seguential
similarity detection algorithm and direct cross-correla-—
tion algorithms are then computationally equivalent, the
only difference being in the specific logic operation re-
quired for implementation.

The effects of coarse quantization on correlation
processes have been examined in detail elsewhere [3] - [7].
A brief summary statement of the results indicates that the
statistical disadvantage incurred by coarse gquantization
of the images is offset by being able to include more rixels
in the correlation computation for a real-time requirement,
assuming that geometric distortion is not a problem. Thus
for an application which requires real-time correlation,
quantization of the data to two levels is an attractive
technique. A more complete comparison of various correlation
techniques for the automatic handoff problem is given in [6].

Examination of the probabilities of false rogistration
and detection for correlation of two televisicn imames, as
a functlon of the video signal-to-noise ratios and a jyreset
correlation threshold, has been done for coarse guantization

of the video signals to two levels (8].




Several approaches to the false acquisition provlem
have assumed gaussian statistics for the correlation func-
tion itself. Rockmore [9] extends this approach ucing an
dgeworth series expansion so that the correlation function
statistics are no longer restricted to being gaucsian.

Limited parametric analyses have been done by various
investigators which show the effects on correlator rerfor-
mance of guantizatlon method [7], image rotation, image scale
differcnces, synchronization error [10] and image sampling
masks for specific applications. These specific applications
typically invcelve correlation of images from like sensors;
and, the correlator performance is strongly influenced by
individual scene statistics. A recent effort [11] has looked
at the problem of correlating a day TV image with Imagery
from a co-located forward-looking infrared (FLIR) system.
Such an aprproach to correlating imagery from different sensor
types 1is important for development of an all-weather capabil-
ity without requiring that a reference image be stored for
each sensor. Individual scene statistics can be shown to
strongly affect the probability of correct registration for
any correlation algorithm. Some method for adjusting
correlator thresholds or preprocessing steps adaptively,
dependent on the scene statistics, is needed.

It is desirable to provide a sound theoretical btase
which shows depcndence of correlator performance on all the
above parameters in such a way that the results could be

applied to new guidance concepts, including those using
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non-compatible sensors in an all-weather system. Further,

. it is desirable to characterize ability of the corrclator to
automatically identify target classes and to r«jiect zimilar
false targets. Also, experimental valldation of the theory
by correlator simulation using actual multi-spectral imagery
is desirable.

Based on familiarity with guidance concepts and sensors
used in Air Force systems the following three objectives are
stated for this effort.

Objective #1: Develop specific characterization of

parametric effects on correlator performance in a way to
provide maximum flexibility in application to existing and
new system concepts. Parameters will include but not be
limited to: guantization method, error sources, contrast
reversals, threshold for quantization, threshold for correla-
tion, non-compatible sensors and effect of selected pre-
processing algorithms.

Objective #2: Characterize dependence of correlator

performance on individual scene statistics for compatible
and multi-sensor imagery. Develop theory for an adaptive
correlator which optimizes performance for given scene
statistics.

Objective #3: Using actual imagery, validate parametric

dependence through computer implementation of various correla-

tion and pre-processing algorithms.




1.2 Proposed Effort. Of the related areas essential to’

the development of an all-weather capability for guidance
based on correlation of imagery, several are in need of
further analysis and verification through simulation to
improve correlator performance and to predict critical para-
metric dependence.

Several key points need to be examined and understood
to provide a good measure of expected correlator performance
for stand-alone, all-weather systems. These key points and
several related problems will be examined in detail in the
proposed program.

Specifically, solutions of the following problems are
critical to meeting the desired objectives for an image
correlation system:

1. Scene Dependence - Relative sharpness of the

correlation function, probability of correct
registration and the success of pre-processing
algorithms have been shown through simulation
studies to depend strongly on scene character-
istics. This dependence must be characterized
to allow optimization of correlator performance.

2. Threshold Effects - Both in terms of guantizer

threshold and detection threshold, there are
st11ll uncertainties on how these values should
be chosen. Further, thresholding for edge
detection algorithms has a critical impact on

correlator performance. A sound theoretical




base backed up by simulation recsults 1:c needed
to provide guldelines on threshold selecction.

Pre-processing and Distortion - Further work is

needed to determine the effects of distortion
and what kinds of pre-processing would improve
correlator performance. Specifically, in terms
of images from non-compatible sensors there is
a need to investigate algorithms in addition to
the gradient method. A trade-off of correlator
improvement versus computational burden must be
developed for uniform comparison of processing
methods.

Adaptive Correlation - Once parametric dependence

for distortion, scene statistics, threshold
effects and processing methods have been deter-
mined, it 1s desirable to provide an adaptive
capability for the correlator to optimi:ze
performance.

All-weather Capability - All the above analyses

and simulations should be based on conditions
which would provide a stand-alone system with

all-weather capability.

The following tasks are proposed for accomnlistment of
the goal of developing a model and methods for evaluating the

parametric dependence of image registration performance.




Task 1:

Task 2:

Task 3:

Task U:

Task 6:

Gain familiarity with cpecific detuils of
guldance concepts and cencors uced in
exlsting and planned Alr Force Dyotems.
This task will te accomplicied bty visits
to Wright Pattcrson AFB.

Lxumple imagery for ccrrelation analysis
will be sclected from available imagery
from specific Alr Force systems, from
multi-spectral photographs diglitized by
scanning microdensitometer, or from com-
ruter-generated speclal case Iimagery of

Known statistics.

-

Distortion including rotation and scale
errors of selected magnitudes will te
applied to the Imagery. Effcct on correla-
tor performance will be juantificd.

Quantization effeects on correlator rer-

formance will be evaluated for continucus
gray scale, btinary and 3-level auanticers
showing effects of aquantizer threcolds,
Pre-procersing algorithms which extruct
edime Information from the imoery will e

evaluated in terms of thelpr o feot on

correlater performance moaures,

Jeene characterizatlon in termo of ot
protabllity denclty functions will o
computed for the cample dnoesery © e o0t

alotortions and prosproec, o lor b i,




Other descriptive features will be computed
for scene characterization.

Task 7: A cound theoretical base will be estab-
lizched for evaluating correlator perfor-
mance in terms of scene characterictics,
gquantization method, selected distortions
and pre-processing methods.

Task 8: Based on parametric analyses of correlator

vertformance, adaptive methods for perform-

ance optimication will be recommended.

Figure 1.1 shows the conceptu included in this proposed
effort. The combined experimental/theoretical approach should
provide definitive answers about the effects of specific
parameters on correlator performance.

1.3 Results Summary. Early emphasis was placed on character-

izing scene content and on utilizing scene content to adap-
tively modify the correlation approach (in choice of algorithm,
quantization thresholds or preprocessing steps). OClrecific
accomplishments are summarized btelow.

1.3.1 Thresnolded difference algoritim. As a result of
characterizing Joulat ccene content in termo of tlie joint
provatility denslty functlon a riew repgicstration metric wasn
defined (referred to in thils report as the threchold-d
differcnce (Te) method) whileh yrovides a charper correlation
peak than any other pixel-ty-yixel method Investiroe

Because of thic promicing performiance the offert wano e =dires

to provide o mopre tihorouwh analyosic of the TU mety o,

¥
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EXAMPLE IMAGERY
eSystem Specific

e Generated
e Special cases

|

DISTORTION

eRotation - selected
angles in azimuth &
elevation

eScale-5%, 10%, 15%, 20%

e Continuous gray ,scale

¢ Binary — T
epetene— T
T
2 r- r
e3-level | l —>
T

eEdge detection-algor%thms
and threshold effects

®Pre-distortion
eSystem specific

UANTIZATION & PRE-PROCESSING}F"“——" ePixel mismatch probabili

CATION

ADAPTIVE MODIFICATION
e Performance bounds

)

¢ Scene dependence

SCENE CHARACTERIZATION

® Joint probability
density functions

e Feature extraction
& scene classification

e Quantization effects
e Distortion dependence
¢ Pre-processing effects

e Recommended adaptive
methods

L

REGISTRATION PERFORMANCE
® Probability of false fix
e Probability of registratior]

e Statistical reliability

PARAMETRIC DEPLNDENCE

® Registration accuracy

Figure 1.1 Concepts for correlator evaluation
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1.3.2 Gradient preprocessing. Since images with higher
spatial frequency content produce sharper correlation peaks,
it follows that a high frequency emphasis processor such as

the gradlent should produce a sharper correlation peak. A

simple 3 x 3 gradient processor was applied to typical TV
and FLIR imagery. The resultant correlations were sharper
for all algorithms except the TD method which was still the
sharpest peak of all. £&.l.ce the TD method is inherently a
high resolution method =uywav, then gradient processing had
little or no effect on :°.

1.3.3 Adaptive quarntsization threshold. For binary and

tri-level correlators :.he gquantization threshclds are typically

chosen to be dependent on global scene statistics (mean and

standard deviation). This global thresholding tends to
reduce high spatial frequencies in the image, even for images
which have been gradient processed. A locally adaptive guan-

tization method was implemented whereby thresholds are based

on statistics (mean and standard deviation) within a small
window about the pixel being quantized. Simulation results
for a binary correlator using an adaptive threshold in a
3 x 3 window gave a high resolution correlation function.
2. SCENE CHARACTERIZATION
One objective for this effort was to develop methods

for characterizing scene content and to make use of knowledpe

of scene content to optimize registration algorithms, para-

meters, etc.

11




2.1 Scene Content and Correlation Accuracy. One measure

of scene content is 1ts two-dimensional spatial transform
which gives a detailed measure of spatial frequency content
in the image. From two images r and s, whose transprms are
R and S, we form the two-dimensional cross spectrum of spatial
frequency.
Grg(8,9) = R(8,8) S"(8,9) (2-1)
The 1anverse transform of G 1s the cross correlation

function, C, of r and s.

F
Crs(a,d);::GRS(B,B) (2-2)

Further, because of the inverse relationship of size
between two Fourier domains, it follows that high spatial
frequencies in G transform to sharp correlation peaks in C.
Therefore, a sharper, more accurate correlation peak is
expected from imagery with high spatlal frequency content;
and, preprocessing algorithms which enhance high frequencies
have the potential for improved correlator performance.

2.2 Statistical Characterization. One method for concise

characterization of scene content is in terms of statistical
descriptions. Unlvariate statistics give a description of
individual images and bivariate statistics provide joint
descriptions between images. 1In either case, the most complete
statistical description is provided by estimates for the n-th
order probability density functions (pdf). Other statictical
descriptors such as moments or statistical functions can be

defined in terms of the appropriate pdf.

e & e Ml o
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2.2.1 Simple moments and univariate statistics. Mecun and
standard deviation are often used as parameters in cetting
quantization thresholds for binary and tri-level reglstration
methods. These parameters are estimated as array averages

for an image, f, with K x L pixels as

Mean estimate

i i if(im (2-3)
=1

K L L
5 = [KI%_-IZ > (f(i,j>—ﬁ>2] (2-4)

Additional statistical descriptions for the image are
given by the following functions.
1. Histogram - an estimate for the univariate

amplitude prabability density function
(for 8 bit quantization)

n ..
h(a) = g2 a = 0,255 (2-5)
n, = number of pixels at amplitude a
2. Fourier spectrum
= 2 -
6op(8,2) = [FFT{r(x,1)}| (2-6)

3. Autocorrelation function

[ R

R, Wy




2.2.2 Joint statistical descriptior.. Registration proper-
ties of two images are completely characterized by the joint
probability density function between the twoe images with
shift in two dimensions (a,8) as parameters. Parumetric ana-
lysis of this joint pdf requires knowledge of the cross
correlation function between the two images. Since the objec-
tive is to use the joint pdf to predict cross correlation
properties, the analytical approach appears to go in circles.

An estimate for the joint pdf between two images is
given by their joint histogram. For eight-bit images the
joint histogram has a domain of 256 x 256 values and presents
a relatively complicated statistical description of the
Jjoint properties of the two images. Additionally a complete
histogram surface is generated for each relative spatial
shift between the two images. Thus it appears that charac-
terizing two images by their joint histograms is a formida-
ble task which produces too much information to be useable.
Strictly speaking this is true; however, there is useful
information and enhanced understanding to be achileved from
examining the joint histogram.

For images r and s with 8-bit pixel values and size
K x L, the joint histogram for shift (a,d) is given by

n(ra,sb)

h(a,b,a,8) = T

a,b = 0,255 (2-8)

where n(ra,s = number of pixel pairs

p)
wherein the amplitude in r was a

while the amplitude in s was b.
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Some inusipghit inte the regictration procese ic achieved
by examining the propertiecs of the jolint hiztogram for some
special cases. At registration, ideally, all pixels match
exactly and all points in the joint histogram ile ulong the
r=s line as shown in figure 2.l1a.) Realistically, at regilstra-
tion some pixels will not match due to uncorrelated noise in
the images or due to geometric distortions. These mismatched
pixels are represented as points scattered off the r=s line
in figures 2.1lb.) and ¢.). The rms scattering distance is
relatable to signal-to-nolse ratio or to percent distortion.
The effects of gain errors and mean value shifts between
the two images are illustrated in figures 2.1 d.), e.) and f.).
It will be shown later that these two errors may be ccrrected

by a simple amplitude range scaling prior to registration.

Further insight into the behavior of the jo:int vdi for

’

two images with varying degrees of correlation is gained by
examining tne speclal case where r and s are jointly mzuszian.
rqui-amplitude contours in the joint pdf domain are srown in

Figure 2.2 for a) uncorrelated-equal variance; u)

[

S

uncorrelated-
unegsual variance; ¢) partially correlated:; and 4) corr. love

P

(perfectly registered).




all valu<s lie on r=c

r

a.) Ideal registration

r'=s

- off r=g line

. A
. . ..

S "' y ‘o'.
I *-‘s—~————-rms scattering dict

o :
dependent on s/n rat

AN
7/
r

b.) Uncorrelated noise at registration

r=s

< /. - some values scattrored

s R off r=s line
R
AN rms scattering dirtan
L dependent on vercent
and scene content
r

¢.) Geometric distortion at registration

Firgure 2.1 Joint Histogram Properties
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L

d.) Mewn value shift at registration 1
L

N
r=s
all values 1lie on this lire
S
4
OO >

r

e.) Gain error at registration

N
r=s

values lie on tnis line

jaV]
o)
o

N
0 7
r

f.) Gain error and mean value shift at regsictration

Wigure 2.1 (cont'd)




JOINT HISTOGRAM

[F r & s ARE JOINT GAUSSIAN

a) —UNCORRELATED b) —~UNCORRELATED
~EQUAL VATIANCE -UNEQUAL %ARIANCE
S S
r=s r=s
IJS 'T— -_— _— - US WL ~—- —_— ———
! |
L r H r
Hr \ Hp
¢) -PARTIALLY CORRELATED d) -CORRELATED (p=1)
s s l
r=s

.

u

r

AT REGISTIRATION - IDEALLY r=s

Figure 2.2 Joint Gaussian pdf
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3. REGISTRATICN MnTRICS

There are several regilstration metrice wilecn may te
defined for compariug two images [6] and[1z]. Trrce metrico
were investigated and compared as rart of tinis effort. The
"direct cross correlation” and "mcan absolute difference"
metrics were included because of their widespread uce in
real-time or near real-time applications. The "threcsiolded
difference" metric was developed as part of this effort.
Definitions and properties for these three metrice are given
in this section.

Definitions are given for correlating two images r and s
of size K x L and ¥ x XN pixels respectively as shown in
Figure 3.1. Shift values (p,q) are restricted so that the

images always have KL overlapping pixels.

3.1 Direct Crors Correlation. The definition for the discrete
cross correlation between two spatial functions fl(n,m) is given
by (3-1)

C(p,a) = E [f;(n,m) fy(ntp, nta) (3-1)
where:

E [-] is exypected value

Based on an image model which is characterized by a shift-
variant mean and shift-invariant second-order statistics [12],
(3-1) may be estimated from a spatially averaged function.
Equation (3-2) defines a nomalized direct cross corrclation
(DCC) algorithm for estimating C(p,q) for the image models

shown in Figure 3.1.
1y




GIVEN - OBJUECT OF INTEREST IS CENTERED IN r{m,n)
- OBJECT OF INTEREST IS WITHIN =(m,n)

OBJECTIVE - LOCATE OBJECT IN s(m,n) and find p¥, g¥%

AFTER ScALE MATCHING

s(m,n) has M x N pixels
r(m,n) has K x L pixels

SHIFT VALUES
p=O, l’ """" ’M‘K
q =0, 1, ———=- , N-L

Figure 3.1 Properties of Images for Registration
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K L
E E r{m,n)s(m+p,n+a)
A
m=1 n=1

Cg(psq) = ,
K L KL 172 (4-2)
E E pd(m,n) Z s (mtr  nta)
m=1 n=1 m=1l n=1
where: p = 0, M=K :
q = 0, M-L
+

For guantization of r and s to 1 bit (2 levels) or -1,

the denominator term in (3-2) reduces to KL to give

o

K L
A 1 PRSP
Crs(pPsa) = g1 E E r{(m,n)s(m+p, n+q) (-3
m=1l n=1
Both (3-2) and (3-3) have the property that 8 = 1 at ‘

registration.

3.2 Mean Absolute Difference. The definition of the mezn

absolute difference algorithm (MAD) for the images in Fipure

3.1 is given by equation (3-4).

A oKL
- L
E.g(psa)=l -7¢ E E

m=1l n=1

r(m,n) - r - s(m+p,n+q) + Ecc {3=4)

where r is the mean value of r

K L
- 1 z : z : -
r = K-f: r'(m,n) fian)

m=1l n=1 ;
- |
and qu i1s the mean value of KL pixels in s at shift p,q. i
1 K L
5 = rT E E s(m+p,n+q) (3=6)
m=1 n=1
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Flpure 1.2 Effect of Binary and Tri=level Quantizatic

2 @
Correiation as Reprecented by the Joint pdf
Jetween roand s.

It 1o clear that there are areas where cexact o oaear
matches are counted as non-matches by the two retihiod. )
there are areas where r oand s have widely differoent vooluen

that are counted as matches.
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A more lopical apyrroach ic to concider two plixels ao
matcened If thelr values urree within vcome crecified threchold
centered about the r=5 line. The result 1o chown in FVipure
3.30) in terms of tne Joint pdf and o cimple implemontation
is shown in RFipure 3.3 UL).

The threcholded difference algorithm is computaticnally
equivalent to the S-bit MAD algorithm exccpt that the magni-
tude error is thresholded. This allows for small (opecifinble)
errors between amplitudes of r and 5 with no penalty. The
resultant metric should exhibit a charper regictration peak.

Simulation results prescnted in scction 5. verify thisc typocthenic.,

RESHO FFERENCE

)

r

a) Representation in joint pdf domain

ou

r(x,y) —-s) N

s(x,y) Subtract
» H

b) Implementation

Magnitude —>

Filgure 3.3 Thresholded Difference Method




4, PREPROCHOCILG AND W(UANTIZATION

There arc numercus preprocersing methode with ypotontial
for applicaticn to the reglictration problem. For thie «{fort,
methods used in cimulationc were Kept simple and celected
with the goal of improving corrclation peak oharpnecs. Rela-
tively simple statistically based thresholds were defined for ]
the binary and tri-level guantizers.

Gradient preprocecsing was implemented to eonhance high }
frequency content in the imames and produce a churper correla-
tlon peak. A locally adaptive method was implem-nted for the
binary quantizer.

Preprocessing to correct for mean value shift and galin {
differences for plxel amplitudes for the two images is imper-
tant if gocd results are to be obtained with the threshclded
difference method.

These preprocescing methods are discussed in this scctlion.

4.1 Binary and Tri-Level Quantization. The images were

quantized to two levels or three levels as shown in Fijure 4.1,

our
1
OUT
—_— ——> 1N 1 '
T
1 . -
-1 L ! ! 7
—_— -1
BTUARY TRI-LEVE,

Fipure 4.1 udinary and Tri-level Quantlizers




For the images, thresholds were deflned in terms of
statistics for the total (global) image. For binary quanti-
zation, T was chosen as the median value in the larger inmage.
This choice for T glilves an c¢qual number of plusc and minus
ones in the larger image. For the tri-level guantization, 4
as tne lower 1/3 and T

choosing T as the 2/3 i

1 2
level in terms of total pixels in the amplitude histugram
(ie 33 and 67 percentiles) gives an equal numbter of pixels

at -1, 0 and +1 for tne output quantized lmage. In cunmary

the following thresholds were used.

=
[}

median (binary)

-3
0

33 percentilel t v 1.yer)

—
|

5 = 67 percentile

Alternate cholices were available and are included in

the program software. These ilnclude

T = u * ko
T, , =u t ko (4-1)
T = low %, high %

1,2
where u 1is the mean, ¢ 1s ctandard deviation and k iz a
specifiable constant.

4,2 Adaptive Binary Quantizor. A locally adaptive b ivany

quantizer was implemented which results in a quantiz.d iname
that retains the image hich frequency content, Tihe ooy
pixel in a 3 x 3 array is gquantizaed dependent on o a oot Tot 1okl
threshold caleculated within that window. Ac i winaow

moves across the image the three thold 1o modificrg ord weed to

juantize the midale plzel In the wihndow.




Upecifically,
T = median in a 3 x 3 window.

This adaptive unethod retaing the image high frequency
contert and chould result In g sharper correlation poawk for
the DCC or MAD alporithmo. Further it has the advantage of
relatively simple implementaticn in real time, cespecially if
the mean inctcad of the median is uced as the throchold.,
Simulation reculte in scction 5 will compare ccorrolaticon
sharyness for the mlotal and locally adaptlive ruznvlizors,

4.3 Gradient Procecuoirng;. radicat preprocecoing of Ui Imaces

prior to correlation orfers two potential advantaroec.  Firot
the gradient operution cnnanceds hich froauency content und
should result in a sharper correclation peak., Jecondly,
pradicrit processing emphasizes edme Ceatures In an Inace,
wnicr may be the only features of ocimilarity amory Gifforent
spectral band imeges of a olven scene.

s

There dre num<rcus gradient prcececcors fronowinich Lo

chocse including the toterts cross coperator, Lap et

e
-

convclutional windowes of varying rmeemetriecr andg cooloizint
valuco. DBecauce of ito cimplicity o Treowitt marnisode mradi-ns
opceration was applied to the imares prior to veintication

and/cr corrclation. The pradient is calculated v

glm,n) = lg$(m,n)| + ln,(nuxﬂl (=)




a : ———————

)
where gl(m,n) results from cenvolving imgpes roand o Wit
window Wy and gz(m,n) results from convolution with winadow v
These windows were
-1 -1 =1 -1 01
wp = [0 0 0 Wy = |=1 G 1 (U4-3)
1 1 1 -1 01
P
4.4 Gain and Mean Correction. The threcnclded differernce
method 1g especially sensitive to errors in mean value or {
gain between two images to be correlated. Thils was Illuctrated
in Figure 2.1 d) e) and ) where it is clear that thecze errcrs
(even at registration) shift values off the r=s line in the
joint pdf domain. Both these problems are eliminated If r and
1

s images are first ccaled to the same amplitude ran
that neitner image function iz clipped. Ccnsider a function,

r, whicn Iis 1linearly regrescnted over the range r_ . Lo

Ll

roax and a function, s, which 1is linearly represcnt.d cver
i
the range s_,_ to s as shecwn in Figure 4.2,
g min max > ! o
=0
/N
= i;max - e as s e e, e s am M o
o
1
]
! domain ot Wiotoorenr
values at o roc o 1
1
1
I
I
t
‘ - - - A X
1
. ’ \
‘min
m P r 7 v
min mx
Figure 4.7 Gain and Mean Frreors o in Joint Biotosreasoooooidn
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Troeo o donadir o of niovoorarn valiren s e Iotrt Do 0wy
vite dark lince in Plyrure Goo, 1o oorgpred onte v r=Ec Dlnee LY

simple linecar rescaling of roond o welen mape

AR —— .
min o

o}

iy 3 o~ ‘ 3 e P R oy o N B . v vy Y, A
This rescaliny was ap, lied as o neocoooary pre-—yrooeoalng

step prior to the taorecholdicd differcnc. covrve_ztic: olioritim

Jhe rescaling is wccompiichod using equstiors (4-5) and {4-0). 4

-1

min

r(re-scaled) = = — ® .55 (L-5)
max “min
S-s_,

s(re-scaled) = min e 255 (4-6)

3 -5 .
max min

For the case of uncorrelated noise in r a2nd s

PR
uvie

]
b
=
: )
{
by

b
re-scaling applied to signal plus noise will feorece pixsls thzat
are matched to lie off the r=s line. For the threshiolded
difference method to werk in this case reguires trnat the
threshold be increased to allow larger differences between r
and s. Further the threshold chould te related to vhe rms

noise levels in the two 1mages.

5. SIMULATION RESULTS

All algorithms were first tested using simple inrut
arrays of data for which the processing reoulte wore prodie-
table. Hdext the various reglstration metrice were aryliled to
actual clectro-optical imapery. The results of Choooe oinula-
tions arc described In tnis section. A cummory o7 thoe cirmalo-

tions done 1o miven in IFifure 5.1, Quer 100 sinaiastio:n




IMAGERY

e Si TV (ARMY)

e FLIR (ARMY) J
e FLIR (AIR FORCE) ,

¢ VISIBLE (AIR FORCE) PREPROCESSING

T ¢ PREWITT GRADIENT
¢ SCALE CORRECTION
¢ ADD NOISE

A4

QUANTIZATION
e 8-BIT
¢ BINARY &

¢ TRI-LEVEL
¢ ADAPTIVE BINARY

REGISTRATION ALGORITHM
® AUTO/CROSS-CORRELATION
e DCC
e MAD
o THRESHOLDED DIFFERENCE (THRESHOLD)
e FFT METHOD

N

OUTPUT
e PEAK LOCATION
e PROFILE PLOTS THRU PEAK

Figure 5.1 Simulation Options Summary




variaticns, different

are iliustrated by the

binary, tri-level and 8-bit guantization as

witleh coenpare

the a

a tnresic

sprectral

simulations.

bands

Further, th

pre-processing and an adaptive tinary quantizer

selectad simulations.

5.1 Scene Descrirtions.

simulations was obtained from two sources:

1. the U. S.
Alabama; and

2. the U.S.

Corporation (TASC).

w

oth data sets contain multi-spectral,

range imagery from co-located sensors.

Irecet cross correlatis
doed differcrnce ro-t
seene centent, time

and different

low altitude,

scale

Army Iilssile Command, Redstcne Arsenal,

Alr Force through The Analytic Sciences

Ten image flles were established from the data tapes

input to the simulation program.

A brief description of

fhese images is given in Table 5.1.

The first four images were used in auto-correlation

calculations to provide a known registration point

"y

s

in Figure 5.2.

64 x 64 center portion of the larger 128 x 128

31

aring algorithms and gquantization methods. To

his, reference and sensed images were established as

The reference image is extracted as the

o

1or

accomprlish

short

Imagery for use in the correlator

com=
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128
64
p,qg = 0,64
128 64 (p*,q%) = (32,32)
r = reference image
r —-—

<
is3

scnsed image

Figure 5.2 1Image Segments from Silicon TV

Registration then occurs at a shift position (p¥,q¥%¥) = (32,32).
For Ohio Files 2 and 10 the geometry shown in Figure

5.3 was used. The reference image was selected as the central

50 by 50 pixels from File 2. This image was then correlated

with the larger 150 by 150 sensed image (File 1C).

150

00

p,q = 0, 101
50 r 150 S (p*, q¥%) = (51, 51)

File & File 10

Figure 5.3 Ohio Files 2 and 10 Image Segments

33
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For Ohio Files 26 and 27 the inmuge poometrlies chown in
Figure 5.4 was used. The refercnce image was taken as the
lower right guadrant of file 26 (40 x 64 pixels). This
segment was correlated with the entire (80 x 128 pixels)

File 27 image.

128
p = 0,41
6’4 80 S q = 0,65
Ho , (%, a*) = (41,65)
File 26 File 27

Figure 5.4 Ohio Files 26 and 27 Image Segments

For the HSV Files 9 and 10, there was a difference in
scale as well as spectral band. An area of commonality was

selected visually from photographs. Scale difference was

computed from dimensions of a large rectangular target toard
in the two 1mages. Since File 10 was a narrow field-of-view
(NFOV) image, objects in File 10 appeared larger than in File
9 by a ratio determined to be 1.0/0.55. Scaling was applied
to reduce the size of objects in File 10 to match the smaller

size 1in File 9. After scaling, File 10 then had only 33 by

| . as - . . .
| 215 pixels. Figure 5.5 shows the relative geometries for
' image segments from HSV Files 9 and 10. A 56 x 75 «+ fercence

34




407

image 1s obtained

392
= 0,45
= 0,46
* *
(p , g ) = (11,6)
File 10
(l,l, 392
215
223 Twlj_ 407 (190,220 120
56 L
100
Re-scaled File 10
File 9

Figure 5.5 HSV Files 9 & 10 Image Segments

from File 10 and a 100 x 120 sensed image is obtained from

* *
File 9 with a match at shift (p , q ) = (11,6).

5.2 Metric Comparison. Comparison of the direct cross

correlation (DCC), mean absolute difference (MAD) and thresiholded
difference (TD) metrics 1s given in this section for the noisc-

free correlation of imagery represented by Scene 1 and Scenc

2 (ie autocorrelation of Silicon TV imagery) as shown in

Figure 5.2. Results are shown for 8-bit, btinary and tri-l -

quantizations.
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Resulte are chown in igures 5.0 thru 5. for Se-ne 1
and in Figures 5.10 tiru .13 foe Scene . Tne flrures ohow
cross-sectional plots through the correlation peak in vertical
and horizontal directicns respectively. Peak sharpness is
greater in the vertlcal direction for both images. Tiis was
felt to be a result of the limited sampling rate applied to
the 875 line video from which the images were ottained. The
expected result would be reduced frecquency content (and a
broader correlation peak) for the horizontal direction.

The comparisons shown in Figure 5.6 are a) 8-bit DCC
(either direct or FFT implementation), b) 8-bit MAD, c¢) binary
DCC or MAD, d) tri-level MAD and e) tri-level DCC. All methods
gave the correct peak location of 32 and peak amrlitudes
as expected from algorithm definitions for ideal regicstraticn.
Thus the only feature for comparison is relative reak sharp-
ness. As can be seen, there are only slight variations in
peak sharpness among the five methods in Figure 5.6.

In Figure 5.7, a) 8-bit DCC repeated for comparison,

b) TD (T=0), c¢) TD (T=2), d) TD (T=5) and e) TD (7T=10)
simulations are shown for the same conditions as Figure 5.6,
The thresholded difference method is clearly superior in terms
of correlation peak sharpness if the threshold, T, can be

kept small. It should be emphasized here that a threshold of
T=0 gives almost perfect results for the ideal conditions
under which the correlation was done (ie at regictration the

images were known to be a perfect match). For crocs-correlation

30
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Zero-mean random noise with specifiable standard deviation wao
added to each image prior to quantization and correlation.
Two sets of simulations were done representing fairly

high noise levels. Signal-to-noise ratios were defined as

SNR = 2 (5-1)
On

where o i1s the image standard deviation (image r or s) and

oy i1s the specifiable noise standard deviation. For one cet

of simulations a SNR of 0.43 was used, and for the other set,

a SNR of 1.42 was used. Example results are given as vertical
profiles thrcugh the peak in Figure 5.14 for SNR = 0.43 and
Figure 5.15 for SNR = 1.42., Each figure compares a) 8-bit DCC,
b) binary DCC or MAD and c¢), d), e), f) TD for four different
thresholds.

It is clear that the TD method (which is a high frequency
emphasis method) is more sensitive to the high frequency
(pixel by pixel) noise added to the images. It even produces
false peaks for very low values of T. Performance of the TD
method 1is similar to tne DCC method if T is "large encuch'.
The value of T which is "large enough" derends on noice level.
For the two simulations, the TD method began to behiave reason-
ably well at a threshcld of T = 0.5 O This iz illurirated
in Figure 5.14 e) where T = 4C = .6 o (on=65) and in rigure

5.15 e) where T = 10 = 0.51 o, (o, = 19.9).

Additional noise dependence is Indicated in Table 5.2

which gives calculated pcak locations for all the algoritime
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tested for 3cene 1 and SNR = 0.43 and 1.42. liote that error:
are larger for the horizontal (second) peak location. This
is expected since high freqguency noise was added to an imapge

with inherent low frequency in the horizontal direction.

TABLE 5.2 NOISE EFFECTS

Correct Peak Location (32,32)
METHOD COMPUTED PEAK LOCATICH
SNR=0.43 SNR=1.42
DCC(8-Bit) (33,32) (32.32)
DCC(Tri-Level (31,59) (32.37)
DCC(Binary) (31,59) (32,32)
MAD(8-Bit) (33,32) (32.32)
MAD(Tri-Level (31,59) (33,32)
MAD(Binary) (31,59) (32,32)
TD (T=0) (25,51) (31,26)
TD (T=2) X (33,38)
TD (T=5) X (32,35)
TD (T=10) X (32,32)
TD (T=20) (30,35) (32,32)
TD (T=30) X (32,32)
TD (T=40) (33,32)
TD (T=60) (31,40) X
TD (T=80) (33,41) X
TD (T=100) (33,32) X

Yo




5.4 Gradient Preprocesced Images. Gradient preprccencing

by application of a 3 x 3 Prewitt opurator to Cecones 1 and o
was done prior to quantization and correclation, The reoultant
high-frequency-emphasized images chould cxbibit rharper
correlation peaks.

The results are shown as peak profiles in Figure 5.16
Scene 1, Vertical; Figure 5.17 Scene 1, Horizontal; Firure
5.18 Scene 2, Vertical and Figure 5.19 Scene 2, Horizontal
for various registration metrics. Results without and with
gradient preprocessing are shown side-by-side for easy ccm-
parison. In every case except for the TD method, gradient
preprocessing did produce a sharper correlation peak. It
is postulated that sin:. .o TD method exhitits high fre-
guency emphasis characteristics itself, then high-frequericv-
emphasis filtering provided by the gradient procezssor cifers
no additional gain. This "independence" of thne TD method to
gradient processing was observed for all values of T ured in

the simulations.

5.5 Adaptive Quantizer. A4 lccally adaptive tircsihceld was

used to guantize images to 1 tit (binary guantization) before
correlation. The threshold was computed ag elithrr Uhe mean
or median in a 3 x 3 moving window. At each 1. ontich the
center pixel is quantized about the threohold conguted for
that location.

This adaptive threshold in effect cmphacloos L frogee

high frequency content and should recult in o nuch charg er

50
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L ket gl

correlation function. For vilinary qgquantizatlion the KAL and

DCC correlation metrice give oqgquivalent results.  Plgure 5.270
showe the rertical cross-sccetlon through the peak for Mcenc 1.
The a) part of Figpure 5.20 gives the result without aduartive
thresholding for comparison. The b) part shows the rosult

for a 3 x 3 adaptive mean threchold with no noise. Parts

¢) and d) show the DCC and MAD adaptive threshold methods

(mean threshold) for additive noise (SNR = 1.42); and parts

e) and f) show similar results for a SNR 0.43. Different
profiles were obtained for DCC and MAD with additive noilse
because the noise was different for separate runs (although

SNR was fixed).

Figure 5.21 shows peak profiles in a horizontal cdirection

for identical conditions as in Figure 5.20. The nhigh fre-
quency characteristic of the adaptive threshold method is
particularly well demonstrated by a comparison of the a) and

b) parts of Figure 5.21. Since noise added on a rixel by

pixel basis is inherently high frequency, the adaptive
thresnold method should exhibit increased noise sensitivity
for the simulations with additive noise. This was verified
by all simulations of the adaptive method with additive ncise.

A comparison of parts c¢) d) e) and ) of Figurc 5.0 with

Figures 5.14 and 5.15 b) illustrates the relavive offocta o

noise on the adaptive threshold method.

Simulation results for a 3 x 3 adaptive m-dian viaeoho il

are gilven in Figurcs 5.22 for the vertical pcak profile and
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5.6.1 Different Spectral Bands. Imapes listed ac Onlia filec

26 ana 27 in Table 5.1 were lmages of the same scene but in
different spectral bands. OJimulations were done to conpare
the DCC, MAD and TD regictration mcethods with and withcut

gradient preprocessing. A =zummary of the results is given

in Table 5.4 in terms of computed registration coordinates.

TABLE 5.4

Results for Different Spectral Bands

Images 7 & 8. Ohio File 26 (8-12yu)
Ohio File 27 (Visible)

Method Registration
Foint
True Registration Point = (41,865)
DCC 8 bit (37,2)
MAD 8 bit (40,29)
TD (T=10) (41,29)
TD (T=50) (41,29)
DCC 8 bit (Gradient) ( 2,25)
MAD 8 bit (Gradient) ( 2,51)
TD (T=10) (Gradient) (41,50)
TD (T=50) (Gradient) ( 4,32)

Clearly, the closest match is (41,50) for the TD (7=10)
(Gradient) method. Yet the match 1s not accurate in the
horizontal direction. This result indicates that further
preprocessing to extract similarities between the two images

is required.




The recults are shown as profiles through the peak in
Figures 5.24 and 5.25 for the unprocessed images and Figurecs

5.26 and 5.27 for the gradient images.

5.6.2 Different Time of Day. Images listed as Ohio Filecs

2 and 10 were infrared images taken at different times of
day. These were used in cross-correlation simulations.

Results are summarized in Table 5.5.

TABLE 5.5

Results for Different Time of Day

Images 5 & 6. Ohioc File 2 (Noon)
Ohio File 10 (2:00 PM)

Method Registration
Point
True Match Point (51,51)
DCC 8 bit (51,51)
MAD 8 bit (51,51)
TD (T=5) (51,51)
TD (T=10) (51,51)
TD (T=15) (51,51)
DCC 8 bit (Gradient) (51,51)
MAD 8 bit (Gradient) (51,51)
TD (T=5) (Gradient) (51,51)
TD (T=10) (Gradient) (51,51
TD (T=15) (Gradient) (51,51)

As can be seen all methods correctly indentified the
reglstration point, so the best comparison of methods is in

terms of relative peak sharpness and sidelobe levels.
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Cross-scctional plots through the pecak are shown in
Fipures 5.28 and 5.29 for the unprocessed images and in

Figures 5.30 and 5.31 for the gradient imagcs.

5.6.3 Different Scale. Images listed as HSV Files 9 and

10 in Table 5.1 were used in simulations of the cross
correlation of images with different scale. Additionally,
these two images were for different spectral bands. Results
are summarized in Table 5.6 in terms of predicted registra-
tion point.

Peak profiles are given in Figures 5.32 and 5.33 for
the unprocessed images. The DCC 8 bit, MAD 8 bit and TD
(various thresholds) methods are compared. As can be seen
from the Table and Figures, anamolous results were cbtained
for the TD method at low threshold values. This was expected
becuase of the significant dissimilarity between the tuo
images (different scale and different spectral band). It is
significant that the TD method, with a suitably large threcheld

performs as well or better than the DCC and ¥AD methods.
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CONULIOLONS AND BnUl s an 1o

The mest cisgnificant roecult of thizc 0fert has beern toe
definition ¢f a new roegletraticon metric (tue vnresnolacd
differchee moethod) which is adaptive to scone contoent.  Jom-
varicon of the TD method with DCC and MAD for the Zecne 1
and O overtical and horizontal directions (with ciy
dirferont rreguency content) shows that for the ideal carge
{(I=.) i Thonetnod always gives a perfect correlation peak.

4o Lhwe thireshtnold (T) must be increased to allow for ncice

P

or diztorticns, some of the advantage of the TD method
is lost. Hewever, with only a few exceptions (simulations

wilch rroduced falsc peaks), the TD method was as gcod as or
better than any other method. An optimum thresicld fcr the
TD method should be based on some measure ¢ ncise and/or
distortion between the two 1lmages to be correlated.
work is recommended to provide the theoretical btasis ard a
rractical measurement technique to establish an oprtinum value
for T 1n a realistic application.

A single adaptive quantization method for the binar:

[

correlator was shown to give significant imprcvement in !
correlation peak sharpness. Unfortunately 1t showed figh
sensitivity to noise in the images. If the inayory tc be

corrclated has low noise levels at hipher apatial Trogucencics

and If image distortions are strong only ut low o.allnzxi Tre-

gquencles then the adaptive quanticer offers curerior rorlotii-

tion porformance over the global cuantiver.




An overall accomplishmernt of thic effort war the
development of scene adaptive metnods for improving imare
registration. The two methods deccribed atove offer potb=n-
tially significant improvements in correlator perforrance,
even though they have some shortcomings.

It is the opinion of the authors that further investi-
gation and development of scene adaptive methods could make
pixel-by-pixel registration methods more accurate and less
sensitive to image distortions. Fellow-on work in this area

is recommended.
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